Research Shows How Brain Processes Mistakes

New research from Cedars-Sinai has identified neurons that play a role in how people recognize errors they make, a discovery that may have implications for the treatment of conditions including obsessive-compulsive disorder and schizophrenia.

Catching even small errors, such as making a typo while writing a letter, is a critical executive function that allows us to regulate behavior and make adjustments that can assure we don't repeat mistakes in the future. When that process is short-circuited, however, serious issues may arise. Patients diagnosed with obsessive-compulsive disorder, for instance, may believe every action can contain an error, so they can get caught in a cycle of checking and rechecking their work. Yet patients diagnosed with schizophrenia may not be able to detect errors at all.

"One of the brain areas that is known to be important for self-monitoring is the medial frontal cortex, but how exactly this process works and how it fails when it does not work remains poorly understood," said Ueli Rutishauser, PhD, principal investigator and senior author of the study and an associate professor in the Department of Neurosurgery. "In our study, we show for the first time that there are specific neurons in the human medial frontal cortex that signal the detection of errors. We call these neurons 'error neurons,' and we identify a single-neuron correlate of self-monitoring for errors in humans."

The first author of the paper, Zhongzheng Fu, is a senior graduate student at the Rutishauser Laboratory at Cedars-Sinai and a student at Caltech. The study, published online today in the journal Neuron, also offers a new level of understanding for what is called error-related negativity (ERN), which can be easily measured using an electroencephalogram (EEG) and could one day become standard clinical care in individuals with psychiatric disorders.

"While the ERN is easy to measure, it is unclear what specific aspect of brain activity it is related to. We discovered that the activity of error neurons correlates with the size of the ERN," Fu said. "This identifies the brain area that causes the ERN and helps explain what it signifies. This new insight might allow doctors to use the ERN as a standard tool to diagnose mental diseases and monitor responses to treatment."

Ueli Rutishauser, PhD